Grama To Be and not to Be:
PREST - Pialectical Tense Logic

Abstract. The paper concerns time, change and contradiction, and is in three
parts. The first is an analysis of the problem of the instant of change. It is argued that
some changes are such that at the instant of change the system is in both the prior
and the posterior state. In particular there are some changes from p being true to
—1p being true where a contradiction is realized. The second part of the paper specifies
a formal logic which accommodates this possibility. It is a tense logic based on an
underlying paraconsistent propositional logic, the logic of paradox. (See the anthor’s
article of the same name Journal of Philosophical Logic 8 (1979).) Soundness and
completeness are established, the latter by the canonical model construction, and exten-
sions of the basic system briefly considered. The final part of the paper discusses Lei-
 bniz’s principle of continuity: “Whatever holds up to the limit holds at the limit”.
It argues that in the context of physical changes this is a very plausible principle.
When it is built into the logic of the previous part, it allows a rigorous proof that
change entails contradictions. Finally the relation of this to remarks on dialectics by
Hegel and Engels is briefly discussed.

1. Introduction

This paper concerns dialectical tense logic. In the first part (§ 2) I discuss
considerations which make it plausible to suppose that true contradictions
are realized in some changes. The next part (§ 3) specifies and investigates
the properties of a basic tense logic which accommodates this idea. In the
final part (§ 4) I discuss a principle which implies the exigstence. of dialectical
contradictions, and some of its ramifications.

v

2. The instant of change

2.1. This part is devoted to the problem of the .insta,l/lt of change.
The problem is this. Let us suppose that before a time ?, a system, S,
is in a state S,. After ¢,8 is in a state S;. Accordingly, at ¢, it changed
from §, to §8,. What state was it in at t,? There appear to be three possibi-
lities: .

a) S is in exactly one of S§,, 8;.

B 8 is in neither S, nor §;.

) '8 is in both §, and 8;.

I shall call a change of the first kind a ‘type-a change’ and so on. Of course
we should not suppose that all changes are necessarily of the same kind.
What concerns me first is whether there are some type-y changes. Accord-
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ingly I will examine type-a and type-f changes to see whether all cha,nges
could fall into these categorles

2.2. Let us start with type-a changes. A standard assumption is
that all changes are of this kind. Let us examine this assumption. Changes
are often represented by mathematical functions. Of course there is no
guarantee that an arbitrary mathematical function represents a physically
possible change, but let us assume for the moment that the following
function v of one variable £, does:

v=0 for t<O0
v=1 for t>0.

‘We may suppose that 1 represents the velocity of a car moving off from
rest. At time £ = 0 the car changes from Sy, » =0, t0 S, 2> 0. At{ =0
the car is in state S,. Hence this is unproblematically a type-o change.

do
But consider now the acceleration of the car Ti':— At ¢ = 0 the car changes

a d d :
from 8/, _d% =0 to 8, EULT =1. At time ¢ =0 7: is‘ undefined.

Thus this change is a type-f change.

Now let us address the question of whether all ch anges are type-a
changes. What the previous example illustrates is that a change must
be very “smooth” or it will give rise to type-f changes. More precisely,
if any change is represented by a function which has a singularity where
some derivative is undefined, it is a type-f change, for at the singularity
the derivative is in neither the state it was in before nor the state it was
in afterwards. On the other hand, if all changes are represented by functions
all of whose derivatives are everywhere continuous, all changes are type-a
changes. Thus, the answer to our question hinges on that of whether all
physical changes are “smooth” enough.

A negative answer is provided by Charles Hamblin [4] According
to him, if an object moves off from rest “if no derivative ever changes
discontinuously, nothing ever changes”. (A point discontinuity of course
gives an wundefined singularity in the derivative.) Unfortunately this
claim is incorrect, as is shown by the following example (for which I am
grateful to Phil Schultz):

i o — 0 for t<<O0
T e for t>0.

a"x . ) _ .
For every n > 0, i is continuous everywhere, including ¢ = 0.

I think that, in fact, there must be sufficiently “unsmooth” changes
in nature to produce type-f changes. I have no knock-down argument
for this, but I shall marshall what evidence I can find.
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First, notice that the above function is unusual, in the sense that virtu-
ally any other common mathematical function substituted for e~ would
produce discontinuities. This does not prove that physical changes deseri- -
bed by the above function are unusual, but it is suggestive, especially
gince there is doubt that the function deseribes a physically possible
change. For at ¢ = 0 nothing is changing: Yet at any instant after ¢ = 0,
however close to zero, the object moves.

Secondly, and more importantly, there seem to be many changes
which produce discontinuities of the appropriate kind. At the instant
I hear a song or realize a problem solution, there are phenomenological
changes which appear to be discontinuous. There are discontinuous quan-
tum events such as the change of an atomic particle from one gquantum
state to another, and we needn’t plumb the depths of modern physics
to find discontinuous changes. They occur just as much in classical physies.
The instant an electromagnetic wavefront propagated from an electro-
magnet hits an electron there is a discontinuity in the electron’s accelera-
tion.

Tt could be said that all these changes are only prima facie disconti-
nuous — that despite appearances the changes really are continuous,
though the changes occur so fast that we do not notice them and do not
need to consider them for theoretical purposes. There is, perhaps, no re-
futing this. However, there is no evidence for this; quite the contrary,
since it flies in the face of well-confirmed scientific theories. Thus it seems
more than reasonable to suppose that there are some discontinuous changes
and hence some type-f changes.

23. (ould it be then that all changes are type-f changes, or at least
either type-a changes a type-f changes? The answer to this is ‘no’ and is
quickly seen. Simply consider a state changing from 8, to S, at ¢ and
suppose this to be a type-f change (ie., at % the system is in neither
8, nor 8;). Consider the state of not being in the state §,. Call this S,.
Similarly for 8,. For > t, the state is not in 8o; hence it is in state S,.
Similarly, for ¢ <1, the object is in state S,. Hence at t, the state is in
both 8, and §,. This is therefore a type-y change. In exactly the same
way a type-y change between S, and S, gives rise to a type-f change
between 8, and 8,. Thus type-f changes and type-a change always occur
together. So if there are type-f changes, there must be type-y changes.
Hence we seem driven to the conclusion that there are type-y changes.

2.4. T now want to concentrate on one particular sort of change.
Let us consider a change from p being true to p being false (i.e. TIp being
true.). We have seen that in general we must suppose that there are changes
of all three types. I wish to argue that in the particular kind of change
we are now considering we must still suppose there to be changes of types
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p and y. Of course — if classical logic is right — since all sentences are
either true or false but not both, only type-a changes are possible here.
However, classical logic is built on the unargued assumption that truth
and falsity are exclusive and exhaustive, and it is exactly this point
which is now at issue. The principles of classical logic cannot therefore be
invoked without begging the question. I will try to show that type-8/y
changes occur, even in this context, by three examples. Here is the
first.

As I write I come to the end of a word and my pen leaves the paper.
The instant it leaves the paper is it on or not on (i.e. off) the paper? There
seems no reason to say either. Certainly the matter is not settled by any
physical theory of which I am aware. Neither, of course, is it a matter
to be settled by observation. As if we could see whether it was on or not
on at the instant of change! However, an objector could say that the
pen is either on or off but not both, although it is in principle impossible
for us to find out which. However, let us try a phenomenological example.
For days I have been puzzling over a problem. Suddenly the solution
strikes me. We are all familiar with this kind of situation (though for my
part I wish it occurred to me more frequently!). Now, at the instant
the solution strikes me, do I, or do I not know the answer. There appears
to be no good reason for saying one rather than the other. All I know
is that before, I could not say what the answer was, whilst after T could.
The situation is symmetrical. Nor will it really do to say that at that
instant I determinately either did or did not know the answer: It is just
that we do not know and can not tell which. In the previous case it was
possible to suppose that there was a determinate physical situation at the
instant of change which obtained independently of our epistemological
and perceptual abilities. However, there is no independent physical state
in the present example. My epistemological state is all there is. It makes
little sense to suppose that at the instant of change I either did or did not
- know the answer, though it is impossible to know which.

One more example will suffice. I am in a room. As I walk through the
door, am T in the room or not in (out of) it? To emphasize that this is not
a problem of vagueness, I will identify my position with that of my centre
of gravity and the door with the vertical plane passing through the centre
of gravity of the door frame. As I leave the room there must be an instant
at which the point lies on the plane. Am I in or out of the room? Clearly
there is no reason for saying one rather than the other. This can not the-
refore be a type-a change. One could, I suppose, stipulate that I was in
rather than out. However, this is not a solution. Rather, it underlines the
problem. I am free to stipulate either way, and this is because there is no
determinable answer, i.e. it is neither in rather than out, nor out rather
than in. :

o
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2.5. We have seen that some changes from p being true to ~Ip being
true (or vice versa) are not type-a changes. Are they type-f changes
or type-y changes? I wish to argue that they are at Jeast type-y changes.
To this end let us assume that they are type-f changes. We will see that
they are type-y changes too. If the change from p being true to Tip being
true is a type-p change, then, at the instant of change both p and Tp
fail and are false. Since p is false ~p is true, and since ~Ip is false, T17Ip
is true. Hence both ~Ip and ~]7p, and presumably therefore p, are true
and we have a type-y change. Another way to look at the matter is this.
The following is valid classically, intuitionistically, relevantly and virtually

every other way
py )P AP

The lefthand side appears to correctly describe the situation at the instant
of a type-p change from p to ~1p. The righthand side describes the situation
at the instant of a type-y change from ~Ip to —1~p. Yet they hold or fail
together. This train of thought, surprising at first, ig in fact little more
than a corollary of something we have already noted. In 2.3 we saw that
type-f changes and type-y changes are dual and hold or fail together.
In the case we are considering the duality is, in fact, an identity: to be
neither true nor false, is to be both true and false! 7

This reasoning, though I think correct, is not mandatory. One can
avoid it if one is prepared to reject the claim that if a sentence is not
true, its negation is true. For then, even though one admits that at the
instant of change, neither p nor ~Ip is true, one does not have to admit
that both ~Jp and ~17Ip are true. Similarly if neither p nor ~Ip is true
then pv ~1¥ is not true either. However, one cannot move from this to
the claim that its negation is true and hence to the truth of p A 7ip. This
line can be maintained, however, only by a rejection of the T-scheme.

TFor the erucial negation principle, i.e.
Tp—-T"p
(with the obvious notation) follows from

T Tipe>=p
1Tpe"p

and the first of these is an instance of the T-scheme, whilst the second
is the contraposition of one.

Now I think that a rejection of the T-scheme is wrong, and hence
this way of avoiding the existence of type-y changes incorrect. However,
backing this up would require a detailed defence of the T-scheme, requiring
a long detour. Hence I will sumimarise this section by saying that there
are very plausible arguments pushing us towards the conclusion that there

11 — Studia Logica 2—3/82
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are type-y changes from p to —Ip, i. e, in some changes contradletlons v
are realized. ~

- 2.6. There is one more thing that needs to be discussed briefly.,
The whole discussion so far has been predicated on the assumption that
time has instants. Obviously the problem of the instant of change (and
the conclusion I have drawn from it) disappears if this is denied. This had
led some people to suggest that time is composed of intervals, rather
than instants (see [4]), and systems of tense logic [6] have been constructed
on this assumption. I wish to make just a couple of remarks about this,
kind of approach to the problem.

First, a good part of our science is based on the assumption that physi-
cal continua have a structure represented by the real line and therefore
that we can speak of instants. In particular, any science which uses the
differential and integral calculus presupposes this. Therefore the rejection
of this assumption would cause the demise of a good part of science.
This more than justifies solutions to the problem of the instant of change
which retain the assumption that time can be represented by the real
line. Of course it is possible that some or much of the mathematics used
in science can be reconstructed on the interval theory of the continuum.
However, the extent to which this can be done is not at all clear.

Secondly, and perhaps more importantly, the interval thesis may well
solve the problem of the instant of change. However, it does so only by
producing a curious account of change. For suppose that during a certain
time a state § changes from S, to §;. Then there must be two abutting
intervals a and b such that a wholly preeedes b, So is true throughout’
a and 8, is true throughout b. Now given that there is no instant dividing
a and b we can not ask whether § is in §, or 81 at it. However, because
there is no such instant, there is no time at which the situation s changing:
a is before the change, b is after it. Thus, in a sense, there is no change
in the world at all, just a series of different states patched together! The
universe would appear to be more like a series of photographic stills shown
consecutively, than something in a genuine state of flux or change. And this
certainly runs counter to our intuitions concerning the way things are.
Again this makes it highly desirable to investigate alternatives.

3. Dialectical tense logic

'3.1. I have argued for the conclusion that change may involve the
realization of a true contradiction. It might be thought impossible to
build this insight into a system of formal logic and this, in fact, might be .
considered as an argument against it. However, it is impossible only if .
we work with classical or a similar logic which presupposes that nothing -
is both true and false. Obviously a dialectical logic needs to be based
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on a paraconsistent propositional logic. This section. will show that it is
Possible to have a formal dialectical logic based on a paraconsistent logic.
I will use as a base the system LP of my paper [10] as reformulated in the
appendix to [11]. This is not the only system of paraconsistent logic that
has been mooted, but it is certainly the simplest.

The semantics concern a language L whose formulas, F, are those
obtained from a set of propositional parameters P by means of the con-
nectives A, v, 7. The “truth values” are the set, V, {0}, {13, {0, 1}}
(false, true, and both). A fourth truth value o (neither) is possible. However,
as argued in 2.5 I will take neither true nor false to be the same as both
true and false. Hence this fourth value is unnecessary. Given any evaluation,
v, of the propositional parameters (v:P—V) this is extended to an evaluation
(which we will also write as v) of all formulas by the following conditions:

- 1) - lew(T14)  iff 0ewv(4)
() - 0ev(T4) iff leovd) .
2(a) . lev(AAB) iff - 1ev(4) and 1 ev(B)
() 0Ocv(dAaB) iff 0ewv(d) or 0 cv(B)
3(a) lev(dvB) iff 1ew(d) or1leov(B)
(b) 0ev(dvB) iff 0eo(4) and 0ecv(B).

These are of course exactly the classical truth conditions, except that
in the classical case, (b) of each pair is redundant. Tt is easily checked that
v: F=7.

3.2. To obtain a tense logic, the language L is extended in the usual
way to a language L’ by the addition of two new one-place operators
F, P. We will call the new set of formulas F’'. An tnterpretation for L
is a pair (<, v)> where < is a relation with domain X and » is a function
with domain X such that for all # € X, v,: P—V. I will allow < to be
totally arbitrary. Hence the system of tense logic I specify, which I will
call DTL, will be the paraconsistent equivalent of Lemmon’s minimal
tense logic K; (For this and other details of the classical case referred to,
see Rescher and Urquhart [12] Chs 6-8.) I will discuss briefly extensions.
of this system in 3.5. .

Given an interpretation, v, can be extended to an evaluation (which.
we will also write as v,) of all formulas by the following conditions; - -

The condition for A, v, ~] are as for LP. : '

4(a) lev,(P4) iff Jy<ao lew,(4)
G®) - Oen,(PA) if Vy<ao 0ewv,(4)
5(a) leo (FA) it Jy>a 1co,(A)
®) Ocv,(FA) if Vy>az 0ecv,(4).

Again these are just the truth conditions of standard tense logic except
that in the classical case, (b) of each pair is redundant. Thus PA is true
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if at some past time A was true and PA is false, if 4 has always been false.
It is easy to check that for all # € X v,: F'~V. As usual GA can be defined
as ~lF 1A and HA can be defined as T1P 71A. It is then simple to check
that ‘ ‘

6(a) lev,(HA) iff Vy<a lew,(d)
(b) Ocv,(HAy iff Jy<a 0ev,(4)
7(a) lev,(GA) iff Vy>ao 1leo,(4)
(b) 0ev,(G4) iff dJy>a 0ecwv,(A)

Finally, we can define semantic consequence in the standard way:
X F A iff for all interpretations I and all # in the domain of the first
member of I, either 1 ewv,(A) or for some B el 1¢9,(B).

3.3. I will now give a proof theory for the above semantics. In contrast
to the semantics, the proof theory could hardly be said to be simple or
natural. It could, I am sure, be simplified. However; the version given
facilitates the completeness proof of the next section. I will give the proof
theory in the form of a natural deduction system in the style of Prawitz
[9]. T will use his terminology and notation with which I shall assume

A .
familiarity. In addition, a two-way rule 5 is equivalent to the two rules

4
— and —li The rules are as follows:

B 4
4 B -

) C éOAvB © _%__A%

M == ® So=p

The above rules provide a sound and complete rule system for LP as the
completeness proof of the next section, in effect, shows. To obtain the
rules for DTL we add:

A G4 - FHA
(9) TFA (10) =Ty (11) i
GAAFB G(HBv 0)

(12) F(A A B) (13) Bv Gl
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q ‘_
: where A is the only undischarged as-
(14) sumption on which B depends.
- FB
17 ‘ Where A4,,..., 4, are all the undis-
B GA,...G4 charged assumptions of /1. They are
(15) ~  discharged by an application of this

GB rule.

(Mirror—ima,gé rule).  Any rule obtained from rules
(16)  (9)-(15) by systematically replacing ‘F” by ‘P’ and ‘P’ by
‘B’ is a rule.

Proof-theoretic consequence is defined as usual, viz.:

X+ A iff there is a proof tree whose bottom formula is A and all
of whose undischarged assumptions are in X.

A few facts about proof-theoretic consequence are useful. Since their
proofs are mostly trivial, I will just state them.

i) Tf AFA and FU{A}} B, AUX} B
i) If AU{A}FC, and ZU(B}+ C,, AUZU{Av B} }O,v 0,
iii)y I ArBand B+C, A+C.
iv) HAvHB}'H(Av B)
v) It A+rB, FA+FB
vi) GAAFBGFF(AAB)
vil) GAAGBFG(AAB)
viiiy If A+B, GA+GB
ix) GHAVB)FAVGB
X) G7T1AF T1FA and TIFAFGTA.

I will use these facts in what follows without further mention.
THEOREM 1. If X+ A4, 2FA.

ProOF. This is proved in the usual way, by a recursion over the
formation of proof trees. All that needs to be checked is that the rules
preserve truth in the appropriate sense. This is straightforward and left
to the reader. '

3.4. This section will present a completeness proof for DTL. The proof
proceeds via a couple of definitions and lemmas and uses the canonical
model construction:

DEFINITIONS.
(1) A set of formulas of L’ is deductively closed iff, if A + A, then
A € A. (Evidently the converse condition is always true.)
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(ii) A set of formulas of L' is prime iff if 4 F Av B then 4+ A
or A4+ B.

LEMMA 1. I f A is prime and deductwely closed
i) AANBed iff Aedand Bed

ii) » AvBeAd iff Aedor Bed
iii) © " W(AAB)ed iff T1Aedor TIBed
iv) - TI(4vB)ed iff Tl1Aed and T1BeAd
V) Aed Gff T1714e4
vi) - Aed or 14 € 4. |
- ProOF. Fori):if ANBed, A+ A (by rule 1). So A e 4. Similarly
B e A. Conversely if {A, B} =< 4, A+ AA B (by rule 2). Hence AA B e 4.
For ii) if AvBed, Aed or B e 4 by primeness. Conversely if 4 € 4
(or Bed) A4+ Av B (by rule (4)). Hence, Av B e A. 111) v1) are proved
similarly by mvokmg rules 3 and 6-8. -

To state the next lemma a plece of notation will be useful. If X is a set
‘of sentences, 2, will be the closure of 2" under d1s1unct1on

LevmA 2. Let X, IT be two sets of formulas, such that for no A el]'v ;
2+ A. Then there is a set A such that : ‘

1)y - A42X ,

ii) for mo Aell,, 4 I—Ai -

i) A 4s deductively closed

iv) A4 is prime. : .

PROOF. Let 4,,4,... be an enumera,tmn of the formulas of L’,
Define a sequence of sets of formulas Ay, 4, ... thus: h

AO == 2! . .
If there is a B eIl, such that 4,u{4,}} B.
Apiy = 4,,.

= |J 4,.

n<o
1) and u) clearly hold since F is compact. To show iii) suppose 4 F A but
A ¢ A. Then for some # and B ell,, 4,v{4}} B. Hence 4+ B, which
is impossible. To show iv) suppose that A+rAvBbut A¢ A and B¢ A.
Then for some n, m and 0,,C,ell,, A4,U{4}}+C;, A4,9V{B}IC,.
Hernce if & = max(m, n) AkU{AvB} F Clv Cy. Thus 4 F C,v 0, which
is impossible since CO,v 0, ell,. |

LeMMA 3. Let I be any prime deductively closed set such that FA eI
Then there is a prime-deductively closed set A such that :
i) Aed ‘ :
i) 4 GBel, Bed :
iii) @fHDeA Del ( ze,szqél’ HD¢A)

Otherwise Apir = vAnQ{An}
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Proor. Let X = {A}V{B|GBel}, Il = {HD|D ¢TI} I claim that
for no C eIl,, X'+ C. Applying Lemma 2 now gives the result. To prove
the claim, suppose that for some Cell,, 2+ C. Then for some B, ... B,

cX— {A} and some D,...D,, ¢TI,
+ {By . Bn,A} +rHD,v ... vHD,,.

Hence BA...ABAAFH(Dyv...vD,)

ERE F(BA ... AB,ANA) F FH(D,v ... vD,)
F(ByA ... AB,AA) F Dyv ... v D,
G(BiA «.. A\BYAFAVrDyv ... vD,
GB;A ... AGB,AFAVYD,v ...vD,.

But GB;A ... \GB,AFAel. Thus D,v ...vD,el. Hence D,erl
or ... or D, eI, which is impossible.

LEMMA 4. Let I' be any prime deductively closed set such that “1FA ¢ I
Then there is a prime-deductively closed set A such that
i) "1d¢4a
ily) IfGDel,Ded

iliy If HDed, Del (ie., if D¢’y HD ¢ A4).

Proor. Let X ={B|GBel}, II={"14}U{HD|D ¢TI} 1 claim
that for no C ell,, 2t C. Applying Lemma 2 now gives the result.
To prove the claim suppose that for some C € IT;,, 2t C. Then. for some
B,...B,e2 and some D,...D, ¢TI

{B,...B,} FHD,v ... vHD,v 7]A.
Hence BiA ... AB,+HD,v ... vHD,v T1A
BiA ... AB,FH(D,v ... vD,)v 4.
* G(BiA ... AB) FG(H(Dyv ... vD,)v TI4).
GBiA ... NGB, G(H(D,v ... vD,)v 714).
GByA ... AGB,+ Dyv ... vD,vGA.
GB;A ... NGB, +D,v ... vD,v TIFA.
'Since GB,A ... AGB, €T,
_ D,v ...vD,v 1FAel.
Hence D, or ... or D, or "1FA eI, which is impossible.

THEOREM 2. If XA, 2|+ A.

ProoF. I will prove the contrapositive. Suppose X |+ A Define the
interpretation (<, > as follows. As the domain of <, take the set of
prime-deductively closed sets of sentences, and let 4, < 4, iff

i) for all A if GAe4,, Ae4,
ii) for all A if HA e 4,, A € 4,.
{In the classical case, where maximal consistent sets are the elements

of the domain of <, these two conditions are equivalent. This is not so
(as far as I can see) in the present case.)
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v is defined thus:
(*) levy(p) iff ped

! 11 P.
0ecv,(p) iff TpeA} for all p e

» is an evaluation by Lemma 1 part vi). I claim that (*) holds for all formu-
las of L. , | :
The result then follows, or by applying Lemma 2 with {4} as IT we
can find a prime-deductively closed 4 such that 4 o Y and A € 4. By the
above condition 1 ¢ v ,(4), but 1 € v,(B) for all Be X. Hence 2 |+ A. The
claim is proved by induection over the formation of formulas. (*) provides
the basis. The cases for A, v, T are simple applications of parts i)-v)
of Lemma 1. The case for F' is as follows, and that for P is similar.

AT> 4 1 evg(A)

1ev,(F4) = .
> dll>AAell (Tnduction hypothesis)
=~ 31> A HFA eIl (I is deductively closed)
=> FAed v
FAeA = A >4 Aell (Lemma 3)
=~ 3dAI> 4 1evy(A) (Induction hypothesis)
= lewvy(FA) - . ,
0evy(FA) = VII>A40ev(4) '
> VII>A4 "1Aell (Induction hypothesis)
> TFAed . (Lemma 4)
FAed = Glded - . (4 is deductively closed)
> VII>A TAell :
=~ VII>A40evz(4) (Induction hypothesis)
= 0ev,y(F4). ‘

Hence the result holds for all formulas and the theorem is proved.

3.5. The basic dialectical tense logic can be extended, as in the
classical case, by putting conditions on < (on the semantic side) and
adding extra rules of proof (on the proof-theoretic side). For example, the
proof theory obtained by adding the following rules is sound and complete
with respect to the semantics obtained by imposing the corresponding
condition on <. : ' :

FFA® PP4A | | '
— If <y and y <z then 2 <=z

1)

FA PA
GA :
9 il
(2) 7Aoo Vody 2 <y
a4 A |
(3) —_ A4 Vo 2 < .

A A
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This can be shown by a simple extension of the proof of the previous
section. All this is as in the classical case (exeept that in (1) and (3) both the
rules appear to be necessary whilst classically they are equivalent.) In the
classical case the following rules and conditions pair off in a similar way.

: FA ' G4 )

(4) FEA e if <y then Iz v <z<y.
5 PFA - if x<y and # <2 then y <z
®) AvPAv FA orz<y ory==z.

In the paraconsistent case soundness is easily. shown. However, comjple-
teness is at the present time, an open question.

More complex extensions of the basic tense logic are often made.
For example, if ‘A’ is ‘AA HA AGA’ then classically the rule .

0(GA-->PGA)
GA—-HA

corresponds to the second order condition on <:
Let X, Y be such that Vz e X Vy e Y,  <y; then X has a <- ~last
‘member of Y has a <-first member.

. This and similar rules can not even be. formulated in the language
of DTL since L’ has no lmphcatlon ‘operator. (“Modus ponens” for “mates
rial implication” fails. ) However LP can be extended with a satisfactory
implication operator [11], and the result of adding this kind of rule can
then be investigated. I will leave the details of this to another paper.

4. Leibniz’ principle of qontinu_ity

4.1. In the previous two sections we have seen that there are plausible
reasons for supposing that there are type-y changes, even between p being
true and p being false. Moreover, we have seen how a formal tense logic
can accommodate this insight. In this section I want to examine a principle
which' definitely entails the existence of type-y changes. The principle
was stated by Leibniz. Hence I will call it ‘Leibniz’ continuity prlnexple
(LCP)’. His most explicit statement of it-is this:

“When the difference between two cases can be diminished below
any given quantity, in the data or what is posited, it must be similarly
diminished below any given quantity in what is sought or in that which
results. Or to speak more familiarly: when two cases (or that which is
given) continually approach one another and eventually merge, their
consequences or results (or what is sought) must do so too.” (Leibniz [8]).

Now, with 300 years of mathematical hindsight, it is easy to think
that Leibniz is just saying that if (s,) and (¢,) are two mathematlcal se-
quences such that lims,—1?, = 0 then lim : 8, = limt,. '

NnN—>00 : ‘N—>00 Nn—>0
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No doubt he would take his principle to imply this. However,. the
“seope of the principle is, in fact, much wider than this. The principle is
-intended to apply to all limiting processes, including geometrical and
-physical ones. This is quite clear from the applications of the principle
that Leibniz gives. For example, he points out [8] that since a parabola
can be approached “as close as we please” by taking an ellipse and sending
one focus off to infinity, then “any geometric theorem established for
an arbitrary ellipse, can be applied to a parabola”. As another example,
Leibniz reasons as follows. According to Descartes’ second rule for impaets,
if two bodies travelling with the same speed collide head on, then the less
massive will have its velocity reversed whilst the more massive will main-
tain its velocity. This is supposed to be true however small the difference
‘between the masses of the particles. Now by the principle, the same
effect must hold in the limit when the differences bétween the masses
is zero. This, says Leibniz, contradicts Descartes’ first rule, according
to which a collision between equal masses produces a symmetrical effect.

It is clear from these examples that a, perhaps better, way of stating

the LCP is this: given any limiting process (whether arithmetic, geometric,
physieal or whatever) whatever holds up to the limit, holds at the limit.
In fact this is precisely how the principle was taken after Leibniz. For
exa,mple in 1786, Lhuiler wrote “if a variable quantity at all stages enjoys
“a certain property, 1ts 11m113 will enjoy the same property” (Boyer [1 1
P. 256)
" The contmulty prmclple must be treated with some care. For usmg
it carelessly one could prove, e.g. that every real number is rational (since
every real is the limit of a sequence of rationals), that the limit of every
sequence of continuous functions is continuous, etc. However, it is quite
~clear that Leibniz must have held that there are some bounds on the
application of the principle. For example: every ellipse is a bounded
and closed figure. However, it does not follow that a parabola is a bounded
and closed figure, even though “every geometric theorem established
for an a,rbltrary ellipse can be applied to a parabola”, and this must
‘have been. obvious to Leibniz. What exactly Leibniz took these bounds
to be, I do not know. However, we need not try to decide the issue at
the moment. In 4.4 T will give a precise and unproblematical formulation
of the LOP in the context of tense logic. Let us turn instead to the rationale
for the LCP. |

. 4.2. I want to fix, in particular, on the principle as applied to physieal
limits. In this form, it says that any physical state of affairs which holds
“arbitrarily close to a given time holds at that time. The prineiple is a very
~plausible one with a good deal of intuitive appeal. I am not absolutely
certain why. It is not for the reason that Leibniz gave (viz. that a change
that violates the principle is incompatible with the wisdom and perfection
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of God the designer.) Rather I think the reason is this. A change that
.violates this principle would have to take place in no time. We are prepared
to buy changes over very short times, but a change that occurs in no time at
all is difficult to swallow. For exactly the same reason theories of action
at a "distance have always been thought philosophically puzzling. For
they require an event, viz. the transmission of an effort to oceur in zero
time. Surely if something happens, it must take some time, even if just
an instant. The idea that something can happen in no time appears close
to self contradictory. :

A similar way of putting the point is that if this s1tuad;10n arose, there
would be no time at which the state was changing. Hence the situation
would be more like a succession of photographic stills than a genuine
dynamical flux. (We have discussed this in another context in §2.5.)
-Thus the LCP seems well grounded intuitively. :

4.3. What has this to .do w1th the instant of change? Simply this:
the LCP implies that there are type-y cha,nges Suppose that prior to %,
system 8 is in state 8,, whilst after it, it is in state 8,. Since S, occurs
arbitrarily close to ¢,, it occurs at #,. Similarly S; occurs at ¢,. Thus both
8, and 8§, are realized at ¢,, i.e. this is a type-y change. Of course if S,
is p’s being true and Sy is “Ip’s being true, t, realizes a contradiction.
Thus LCP entails that contradictions are realized at the point of change.
I W111 glve a more formal proof of this in'4.6.

4.4. Leibniz’ principle is easily built into the semantics of tense
logics. We need only suppose that the domain of the order in an interpreta-
tion comes with a topology 7. We then demand that for every = m the
domain of the ordermg and every propositional parameter p:

(**) . If X is any set such that Vo e X 1 e v,(p) [0 € v,(p)] and y is any
limit (accumulation) point of # with respect to the topology 7, 1 ev”(p)

[0 ev,(p)].

(Equivalently: if p is true (false) at every point in X, it is true (false)
at every point in its closure.)

It may seem arbitrary to impose. this condition on propositional para-
meters only, and not on all formulas. However, it is easily proved that
‘provided the condition holds for propositional parameters it holds for
all formulas in which a tense operator does not occur. The proof of this
is by induction over the formation of formulas. (**) provides the basis.
Here are the cases for —] and A. The case for v is similar.

i) Suppose 1[0] ewv,(14) for all # € X. Then 0[1} € v,(A) from all
# € X. By induction hypothesis 0[1] e v, (4) i.e. 1[0] v, (T14).

ii) Suppose 1 ewv,(A4A A B) for all v ¢ X. Then 1 ev,(4) and 1 €v,(B)
for all # € X. By induction hypobhems 1 =X (A) and 1 evy(B) Thus
1 ev,(4 A B). :
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On the other hand, suppose that 0 ev, (A4 A B) for all v € X. Then
0ecv,(A) or 0 cv,(B) for all zxeX. Let X, ={reX| 0ev,(4)} and
Xz ={reX| 0ev, (B)}. Then X ,UX, = X, and since ¥ is an accumu-
lation point of X it is an accumulation point of either X, or X . Hence
either 0 ev,(4) or 0ecwv,(B) by induction hypothesis. In either case
0ev,(4A B)

However, the condition does not hold for formulae containing tense
‘operators. Neither should one expect it to. For if it did, nothing would
ever finish! To be precise, suppose that time has the structure of the real
line and let A be any statement which can not hold at an isolated point
of time (i.e., if 1 ew,(A) there is a nondegenerate interval X such that
vxeXand forallyeX, le 'vy(A)), then if A were ever to hold it would
hold at a later time too. To see this suppose A holds at z. Let X be a ma,m-
mal interval containing # throughout which A holds. By the LCP X must
contain all-its limit points. Hence X is closed. If « is not the right hand end
point of X, we are home. So suppose # is the righthand end point. Consider
any interior point in the interval, y. Then there is a 2 such that y <z <,
and since 1 €v,(4), 1 e v, (FA4). Applying the LCP to FA it follows that‘
1 ev,(FA). Hence A must hold at some point to the right of .

Assuming that one can not live for but an instant, this would be a proof
of immortality, or at least of relncarnatlon’ Thus the LCP applies only

-to present tensed sentences.

4.5. An obvious question is what effect the LCP has on the rules
which hold in a tense logic. If the topology of an interpretation is discrete,
then there are no limit points and hence the LOP will be satisfied vacu-
ously. Hence the LOP will begin to bite only when we consider continuous
or at least dense time. For the reasons given in 3.5, an investigation of the
proof-theoretic effects of the LCP goes beyond the bounds of this paper.
However, some of its effects can be glimpsed from the following consi-
derations. Provided we restrict ourselves to interpretation in which time
ha,s the structure of the real line, then the prmclple

L(Av B)A L(A—~HA)A L(B>P(BAGB)AAAFB
(AAB)v F(AAB)

(where A and B contain no tense operators) holds in all structures in which
the LCP holds. To see this, suppose the LCP holds and let the premise
of the rule be true at some point, @, i.e. Let A = {y| 1 ev,(4)} and B
= {y| 1 ev,(B)}. Because of the final two conjuncts A and B are non-
empty and because of the first conjunet 4 and B are exhaustive. Since
L(A-—>HA) holds then A is a left semi-infinite interval and since L(B—>
—P(BA G'B)), B is a right semi-infinite interval whose left hand end is
open. But AnB # . For suppose not, then A must be closed at its
right hand end. Let y be its end point. Then y is a limit point of B and
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hence by the LCP 1 €v,(B). Thus 1 € v,(4 A B). Finally, since 4 and B
overlap there must be a point 2> » in the overlap. Hence

1ev,(F(AAB)v (4AB)).

Moreover, the above prineiple may fail if the LCP fails. As a counter-
example, let B hold in and only in any right semi-infinite interval whose
left hand end is open, and A hold in and only in its non-empty comple-
ment. At any point of the complement the premise of the rule is true
and its conclusion is not.

I will leave a full investigation. of the proof-theoretic effects of the LCP
to another paper.

4.6. We can now show quite precisely that the LCP implies that
change involves contradictions. To be precise, take any interpretation in
which time is linear and continuous and the topology is the order topology.
Then if there are a formula A and points @,, #, such that v, (4) # v,,(4),
there is a point y such that a contradiction is true at y.

- ProorF. We may suppose A to be a formula without tense operators.
Let X, = {z| 1ev,(4)} and X, = {#]| 0 €v,(4)}. By the above condi-
tions, X; and X, are non-empty and X,U X, is exhaustive. But since the
order is linear and continuous, the order topology is connected (see Kelley
[7], p. 58). Hence X; nX¢ # o or X¢ NX, + o (where X is the closure
of X). But by the LOP X? = X, and X; = X,. Hence X;NX, # @
as required.

This little theorem vindicates dialecticians such as Hegel, who asserted
that change was impossible without (true) contradictions:

.. Contradiction is the root of all movement and life, and it is
only in so far as it contains a contradiction that anything moves

or has impulse or activity.
[5] Book 2, section 1, chapter II part C observatlon 3.

The LCP can also be used to vindicate another cryptic pronouncement
of Hegel. He said (loc. cit.)

We must grant the old dialecticians the contradictions they
prove in motion... Something moves not because it is here at
one point of time and there at another, but because at one and
the same point of time it is here and not here...

To see this, suppose that an object is in continuous motion from, say,
left to right. Take some instant of time #,. At ¢, the object must be at
some point. Call this a. So at #, ‘The object is at a’ is true. But for any point
prior to ¢, ‘The object is not at a’ is true. And since ¢, is a limit of all these
points, this is true at ¢, too.’ I am not sure that this is a legitimate applica-
tion of the LCP, but it is certainly an interesting one.
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4.7. Somuch for the LCP, its plausibility and some of its applications.
T want to discuss one final issue concerning change and contradiction
and I will do this via one final application of the LCP. In [15], Thomagon
defined a “super-task” as an infinite number of tasks and argues that it is
impossible to complete super-tasks. His argument for this concerns a sys-
tem which can be in the states on of off (i.e. not on). There is one switch.
Tf pressed when the system is on, the system goes off and vice versa. We
suppose that at ¢t = 0 the system is off. The switch is then pressed at
times 1 — (3)" for all » > 1. If it were possible to complete a super-task,
Thomason argues, it would be possible to complete this one. In fact it would
be completed by ¢ = 1. But it is impossible, for at ¢ = 1 the state must
be either on or off. But it can not be on, since it has never been on without
having been turned off, and similarly it can not be off.

 Now let us apply the LCP to the situation. In any neighbourhood of
the point ¢ = 1 there are times when the system is on. Hence at ¢ =1
the system is on. (Of course the original specifications of the problem
leave the situation at ¢ = 1 undefined. Thus, in effect, the LCP acts as
a sort of principle of transfinite induction.) Similarly at ¢ = 1 the system
is off. Thus Thomason’s conclusion that at t = 1 the light is neither on nor
off, is correct. For it is both on and off, and this is the same thing, as we
saw in 2.5. However, it does not follow, and Thomason thinks it does, that
the situation at ¢ = 1 is not physically realisable. ¢ =1 realizes a contra-
dictory situation. - ' | -

This will leave some people cold. How can a contradiction be.realised
physically. What would it be like for a light to be both on and off? This
description seems to paralyse the imagination. However, the mental
block is removed once we realise that a lights being both on and off is
a situation with which we are very familiar. Contradictions occur at the
nodal points of a type-y change between on and off.. Thus, assuming
the LOP, we literally witness a true contradiction whenever we turn the
light on or off! It is just how things are at the point of change.

- There is an important lesson to be learnt here. An objection mooted :
against paraconsistency (perhaps the most commonly mooted objection)
goes something like this: ‘I just can’t see (= understand) what it would
be like for a contradiction to be true. What would it be liké for something
to be a cup and not a cup, for someone to be in the room and not in the
room?’ The dnswer should now be obvious. A cup is both a cup and not
a cup the instant it fractures into ‘smithereens. Someone is both in the
room and not in the room: the instant he:leaves. Contradictions are the
nodal points of type-y. changes and, as such, are perfectly familiar. One
finds it difficult to grasp what a true contradiction is like. only because
one fixes on a frozen, static (metaphysical) state of the world and forgets
its dynamical agpects. Engels cengures Dithring for just this
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" True, so long as we consider things as at rest and lifeless,.
each one by itself, alongside and after each other, we do not:
run up against any contradictions in them. We find certain quali-
ties which are partly eommon to, partly different from, and even
ccontradictory to each other, but which in the last-mentioned
case are distributed among different objects and therefore contain
no contradiction within. Inside the limits of this sphere of obser-

- vation we can get along on the basis of the usual, metaphysical

* mode of thought. But the position is quite different as soon as
we congider things in their motion, their change, their life, their
reciprocal influence on one another. Then we immediately become
involved in contradictions. Motion itself is a contradiction: even sim-
ple mechanical change of position can only come about through
a body being at one and the same moment of time both in one
place and in another place, being in one and the same place and
also not in it. And the continuous origination and simultaneous
solution of this contradiction is precisely what motion is.

[3], p. 139.

Engels’ comment is one of which modern logicians interested in formal-
izing dialectics would do well to take note. A number of formal dialectical
logics have appeard in recent years (Thomason [14], Routley and Meyer
[13], Da Costa and Wolf [2]). However, none of these concerns time
or.change, which is at the very heart of dialectics.

Finally it is worth noting the following. I have argued tha,t there are
type-y changes between p bemg true and “Ip being true. During these-'
changes p A, TIp is true. In fact it is plausible to suppose that for a contra- .
diction to be true is for the situation to be in a state of change, to be
changing. Let us call such a state, a fluw state. This raises the question
of whether there is an infinite regress here. What about the change from
p being true to the flux state? Might this not be some new state? The:
answer is ‘no’. For if this is a type-y change, it is characterized by both p
and pA Tlp holding at it. But pA (pA 7Ip) is of course equivalent to
P A “p. Thus to be in a state of changing to a flux state is to be in the:
flux state itself, and no regress arises.

5. Conclusion

Let me conclude by summarizing the main points of the paper. I started
by showing that there are good reasons for supposing there to be type-y
changes, i.e. changes at which, at the instant of change, a system is in
both antecedent and posterior states. In particular, if the change is from
p being true to p being false a contradiction is realized at the instant of
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change. I then specified a basic system of tense logic DTL, with an under-
lying paraconsistent logic, which accommodates this observation. Finally,
I discussed Leibniz’ continuity principle and its dialectical consequences.
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